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The thermodynamic framework for the analysis of nucleation on charged ions was formulated by J. J.
Thomson. It has proven itself a powerful tool for explaining the existing experimental data but it has never
been tested in laboratory experiments. Our goal is to aid in potential experimental verification of Thomson’s
framework by considering the morphological stability of a more realistic nucleus—a dielectric. Thomson
provided radial analysis and concluded stability. However, instability results when morphological variations are
considered in the undersaturated conducting case. We extend Thomson’s analysis and study the morphological
stability of a dielectric nucleus. In the weakly supersaturated case, the larger of the two equilibrium spherical
nuclei is radially unstable while the smaller one is radially and morphologically stable. In the undersaturated
case, there exist spherical equilibrium nuclei that are radially stable (in agreement with Thomson’s results) but
morphologically unstable. This effect should yield itself to experimental verification.
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I. INTRODUCTION

The presence of electricity in heterogeneous systems
gives rise to a plethora of fascinating effects such as various
instabilities and formation of interfacial patterns. Many of
these effects have been studied for well over a century. The-
oretical efforts in this field resulted in a number of funda-
mental achievements, especially in the understanding of the
energetic perspective on continuum systems with electro-
magnetic interaction.'* The rapid discovery of new effects
associated with electricity may be attributed to a number of
factors including development of new materials and penetra-
tion of physics into the microscale and nanoscale levels.

Further technological progress requires new theoretical,
experimental, and numerical methods. Transition to the
nanoscale has lead to increased interest in many new prob-
lems including surface morphology of highly stressed thin
solid films and formation of electric and magnetic domains.
Similar questions arise in various applied problems such as
growth of ordinary’ and piezoelectric films and propagation
of charged vacancies in crystals.® There is reason to believe
that, with some adjustments, classical methods of thermody-
namics will prove effective at the microscale and nanoscale.
The problem of nucleation from vapor on charged nuclei is
an important problem in colloidal chemistry and received a
lot of attention in 1980s and 1990s. This class of problems
has proven controversial from the modeling point view. Sig-
nificant progress has been made recently (see Refs. 7 and 8
and references therein).

Problems of growth of piezoelectric and ferroelectric
materials® raise new theoretical problems of thermodynamic
equilibrium and stability in heterogeneous systems with
phase transformations and electromagnetic interactions.
Similar problems of equilibrium and stability appear in prob-
lems with solid phases.'® Phase transformations under elec-
tromagnetic fields in systems with liquid phases were first
explored by Thomson'! and Leontovich.'> Thomson’s analy-
sis found applications in numerous fields, including meteo-
rology and the Wilson chamber.!® Because of the growing
number of applications, the classical results of Thomson
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need further attention. In one extension of Thomson’s
work,'* his radial stability analysis of spherical conducting
nuclei on ions was generalized to the question of overall
morphological stability, with instability resulting in the un-
dersaturated case.

Any significant advance in theoretical and numerical
methods must be thoroughly verified experimentally since
new predictions are often unexpected and counterintuitive.
Further, new theoretical predictions are typically based on
idealized models and their experimental verification may re-
quire close-to-ideal materials. Meanwhile, materials used in
practical applications are complex multisystems. Phenomena
that occur in those materials interact in complicated ways
and may be impossible to study individually. While it may be
productive to go down the path of more complicated and
realistic models, it may be no less advantageous to pursue
the same strategy in the experimental world: to start with the
simplest and best understood materials and then gradually
transition to those with more complicated structures. This
approach would also require a partial revision and further
advancement of the existing models which have been suffi-
cient in explaining the results of the classical experiments. It
is with this approach in mind that this work is undertaken, as
we adopt as our starting point the classical experiments of
J. J. Thomson and attempt to broaden his theory to include
more complicated morphological effects.

This paper is concerned with the stability of a spherical
liquid droplet formed on an electrically charged spherical
inhomogeneity. The droplet, treated as a linear dielectric, car-
ries zero net electric charge and is subject to evaporation.
The droplet could be water (whose relative dielectric con-
stant x= 80), ink (k=45), or any other dielectric. The inho-
mogeneity could be a single ion whose net charge is equal to
that of one or several electrons or a speck of dust whose
charge density is roughly 10?! electrons/m?>.

J. J. Thomson was first to raise the question of stability.
His analysis can be found in Ref. 11 and a textbook by
Leontovich.!'? The variational method employed by Thomson
can, in principle, be applied to the question of full three-
dimensional stability. However, Thomson was only con-
cerned with radial stability, a question to which he gave an
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exhaustive answer. Had his radial analysis yielded instability,
the question of overall instability would have been closed.
This, for example, is the case for the larger of the two equi-
librium nuclei in the weakly oversaturated case (relevant
definitions to follow). However, Thomson concluded stabil-
ity for the undersaturated droplet as well as for the smaller
oversaturated droplet. Thus the essential question of overall
three-dimensional stability remained unanswered. We gener-
alize Thomson’s analysis and address the question of mor-
phological stability of the equilibrium nuclei.

Analysis of morphological stability is always quite chal-
lenging from the analytical point of view. It inevitably dis-
plays the highly nonlinear characteristics typical of problems
with an unknown interface. The reader is referred to the fa-
mous lectures by Noziéres!> in which he considers one of the
most elementary problems of this kind—equilibrium shape
of a rigid crystal.

The analysis of the physical problem considered here has
been a long-standing goal of ours. However, our prior at-
tempts have fallen short. Our best attempt so far is summa-
rized in Ref. 14 where a simplified version of this problem
was analyzed. Namely, it contains a theoretical study of a
conducting condensate and reaches the following conclu-
sions: In the weakly supersaturated case, there are two equi-
librium spherical nuclei. The larger one is radially unstable
while the smaller one is radially and morphologically stable.
In the strongly supersaturated case, there are no equilibrium
spherical nuclei. In the undersaturated case, there is a single
equilibrium spherical nucleus that is radially stable but mor-
phologically unstable. The fact of morphological instability
in the undersaturated case predicted in Ref. 14 leads us to
believe that instability is also possible in the dielectric case.

From the analytical point of view, a dielectric medium is
Sfundamentally different from a conductor. Electric polariza-
tion is a primary vector field while electrostatic potential is a
field driven by the distribution of free charge. Furthermore,
the dielectric case is of far greater practical importance than
the conductor. Most substances in nature are more accurately
described as dielectrics. It is often said that all materials,
including conductors, display dielectric features. Therefore,
the effects predicted here can be more readily observed in
nature or demonstrated in experiments.

Thomson’s original analysis was motivated by practical
needs in meteorology and in the experimental search for the
electron. Subsequently, Thomson’s work found applications
in registration of elementary particles, colloidal and physical
chemistry, and other areas. The original analysis was essen-
tially based on macroscopic thermodynamic ideas but was
later applied to nanoscale objects and even elementary par-
ticles. It is well known that the problem of correct formula of
ponderomotive forces in polarized media still remains one of
the most debatable problems in leading theoretical and ap-
plied physics journals. Thus, the validity of Thomson’s ther-
modynamic analysis should be tested, first and foremost, on
macroscopic systems.

Maximizing the possibility of experimental verification is
the overarching goal of this paper. That is the main reason
why an analysis of a dielectric substance was undertaken.
Any experiment designed to verify the results presented here
would also be a test of Thomson’s overall thermodynamic
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FIG. 1. Physical configuration and notation. ), is the charged
particle, ), is the dielectric liquid phase of density p, and dielectric
constant &, and )_ is the electrically inert vapor phase of density
p_. The surface S is the phase interface and is at the center of our
investigation.

framework which is yet to be challenged in a laboratory set-
ting. The morphological instability discussed in this paper
may prove to be an ideal candidate for a macroscopic experi-
ment. (Some nanoscale experiments, relying on mass spec-
trometry, have been carried out in the past.'®) An experiment
that successfully confirms the existence of this instability
would put the overall theoretical framework on more solid
ground. Then the question of specific practical applications
would become truly interesting.

Looking ahead, the results presented here are consistent
with Thomson’s radial analysis. However, it is shown in the
undersaturated case that morphological instability is ob-
served in a variety of scenarios. Further, a few interesting
asymptotic modes are considered, including the conducting
limit x> 1. Finally, a system of equations for quasistatic evo-
lution of the interface is presented. This system is useful for
a variety of purposes, including discovering nonspherical
stable equilibrium nuclei.

II. MODEL

Our full thermodynamic treatment of liquid-vapor equilib-
rium is based on the Gibbs variational approach. The ther-
modynamic theory of electricity is incorporated into the
model. The reader is referred to the state-of-the-art refer-
ences on the variational formulation of the laws of
electricity.!~* We choose a model that can be found in Ref.
12 generalized to dielectrics. Figure 1 contains a diagram of
the physical system. It is maintained at a fixed temperature
that allows a heterogeneous equilibrium coexistence of two
phases. The condensate is treated as a linear isotropic dielec-
tric with the relative dielectric constant of k, k> 1. The gas-
eous phase and the vessel are electrically inert. The quanti-
ties ps+, e+, and V. are mass densities, Helmholtz free-
energy densities per unit mass, and total volumes of the two
phases. Both phases are incompressible. We assume that the
system is kept under fixed external pressure p°.

The domain (), with boundary S, is occupied by a
spherical charged particle of radius R,. The particle carries a
uniformly distributed charge Q. The domain (), is occupied
by the condensate and €)_ is occupied by the gaseous phase.

184110-2



MORPHOLOGICAL INSTABILITY OF THE DIELECTRIC...

The two phases are separated by the interface S.

Suppose that P is the polarization field inside the dielec-
tric, ¢(z) is the potential field, G=-V ¢ is the electric field,
and D=¢,G+P is the electric displacement, where g is the
permittivity of free space. The electrostatic fields are gov-
erned by the following system: (i) within the phases

V-D=0, (1a)
(ii) across the interfaces S and S,
[¢]=[D]-N=0, (1b)

where [X]=X,-X_ is the jump in the enclosed quantity
across the interface and N is the outward normal.

Our approach is based on the minimization of energy. Let
e be the permittivity of the dielectric substance (k=g/g).
The Gibbs free energy G of the system is the sum of the
terms associated with each phenomenon—internal energy,
pressure, electricity, and surface tension.
eG?

—dQ

G=Vipie,+Vope +(V,+V)p+ f 2

Space
+o f ds, (2)
S

where o is surface tension. Using the constant mass equation
p_V_+p,V,=M =const, (3)

we can rewrite Eq. (2), dropping an immaterial constant,

“r eG?
G=V,p.(p°=plp 1+ 2 dQ+o| ds, (4)
S

Space

where

oL
(']
is the saturation pressure in the absence of electricity.

In order to explore equilibrium configurations and their
stability, we must calculate the first and second variations in
the energy [Eq. (4)]. This general approach will allow us to
explore the equilibrium of both spherical and nonspherical
equilibrium nuclei and their stability with respect to arbitrary
infinitesimal perturbations of the interface.

We treat the location of the interface S as an independent
variation. Using the techniques of the calculus of moving
surfaces,!” it is straightforward to show that the first variation
dG of the energy [Eq. (4)] is given by the surface integral

(5)

dGz—fC{NiNj[TU]*‘UBg"‘ [p](p;—_p*)}ds’ (©)
N

where N; are the covariant components of the outward nor-
mal N, the quantity

1 o
TV = E&”EkD" —-E'D/ (7)

is the Maxwell tensor of electrostatic stresses! and B% (the
trace of the curvature tensor Bg) is the mean curvature. Since
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we are free to choose arbitrary infinitesimal normal displace-
ments C of the interface S, we conclude that equilibrium
occurs when

[p](p°-p") _

NN[T']+ 0B+ 0. (8)

Equation (8), combined with Egs. (1a) and (1b), governs
the equilibrium of the system. In order to test whether a
given configuration satisfies the equilibrium equations, the
electrostatic system [Egs. (1a) and (1b)] is solved first and
then condition (8) is tested. The presented system has a non-
linearity caused by the presence of an unknown boundary. It
is unclear whether the presented system can be solved ana-
lytically. It can, however, be solved numerically. Below we
suggest an approach that can be employed in computing gen-
eral equilibrium configurations. In order for the suggested
method to work, such equilibrium configurations must be
stable in the physical sense.

Spherical nuclei are one particular family of equilibrium
configurations. For a spherical nucleus, the equilibrium [Eq.
(8)] reduces to a one-dimensional algebraic equation for the
equilibrium radius. All the elements in Eq. (6) are readily
calculated. The mean curvature B is given by

o 2
B, = R 9)

Since the unperturbed electrostatic potential is radial

o1, 1
—+—|1-=|, Rg<r<Rr
K

QO Jkr R
o(r) = (10a)
41e, 1
-, R<r
’
and its derivative is given by
! Ryo<r<R
-, r
, (0] Kr’ e
0= (100)
mEY 1
- R<r,
r

the “normal” components N;N;T of the Maxwell tensor [Eq.
(7)] at the phase interface are given by

2

€0
-— r—R
- 0 \*1 2e
NiNjTUZ _4 (11)
4meqg/ R N
_E R«+—r.

Therefore, the normal jump in the Maxwell tensor is

Q2(8 - 80)

NN[TV]= }
'j[ ] 327 eg R

(12)
Substitute Egs. (9) and (12) in the general equilibrium, Eq.
(8). The result is a polynomial equation for the equilibrium
radius R,
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1 Q2<8—80> _4,200=p0l 13)

167720'80F € R op_

Equation (13) is nondimensionalized by introducing two
length scales, R* and R’,

. Q2(8 _ 80) 1/3
k= { 167720'808:| (142)
. 20p_
C(p-pOlpl (140)

The positive quantity R’ is characteristic of the relative mag-
nitudes of the electric and surface energies. The quantity R*,
which can be positive as well as negative, does not have a
direct physical interpretation. It represents the equilibrium
radius of the critical nucleus in the absence of electric fields.
Importantly, when electric fields are absent, the equilibrium
picture is not just different—it is almost completely reversed.
In the oversaturated case p°>p* and R* >0, there is an equi-
librium nucleus of radius R*. In the undersaturated case p°
<p* and R*<0, there are no equilibrium nuclei where the
liquid phase is inside the vapor phase.
Introduce dimensionless quantities y, u, and a,

-1

yo=—, (15a)
Ro
R!

ul=—, (15b)
Ro
R*

al=—. (15¢)
Ro

The sign of a coincides with that of R* and indicates whether
the system is oversaturated (¢>0) or undersaturated (a
<0). In terms of y, u, and a, the equilibrium condition (13)
reads

v =4y + 4ula =0. (16)

III. EQUILIBRIUM SPHERICAL CONFIGURATIONS

A graph of f, ,(y)=y*~4u’y+4u’a is presented in Fig. 2
for several values of the parameter a. The system is over-
saturated for positive a and undersaturated for negative a.
Each positive root of f, ,(y) corresponds to an equilibrium
spherical configuration. The larger the root, the smaller the
equilibrium radius. For the borderline case of a=0, the curve
passes through the origin. Therefore, in that case, there is a
single equilibrium configuration. When the system is slightly
supersaturated, a<<3u/4, there are two distinct equilibrium
radii. In the strongly saturated case, a>3u/4, no equilib-
rium nuclei exist.

In the undersaturated case, a<<0, there is a single equi-
librium radius. The undersaturated case is our primary focus.
One can see from Fig. 2 that the equilibrium radius dimin-
ishes as the level of undersaturation increases. However, for
any undersaturated configuration, the positive root of f(y) is
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FIG. 2. Analysis of f, ,(y)=y*-4u’y+4ua as a function of y.
The function f, ,(y) is the nondimensionalized first variation total
energy and y is the nondimensionalized inverse radius. Therefore, a
zero of f, ,(y) indicates an equilibrium configuration and a positive
slope indicates radial stability.

greater than Y4u. This relationship will play an important
role in the stability analysis of undersaturated equilibrium
configurations.

IV. RADIAL STABILITY OF EQUILIBRIUM SPHERICAL
CONFIGURATIONS

In the previous section we summarized all equilibrium
spherical configurations. However, whether a particular equi-
librium configuration can be observed in experiment is dic-
tated by its stability properties. In this section we address the
partial question of radial stability. The overall morphological
stability is treated in the following section.

An equilibrium spherical configuration is radially stable
when

L) >0 (17)
y

Since df, ,(y)/dy=4y*-4u?, this condition is equivalent to
y>u. (1 8)

On the other hand, for undersaturated nuclei, y>%’Zu, as
derived in the previous section. Therefore, condition (18)
always holds. Consequently, all undersaturated equilibrium
spherical nuclei are radially stable.

For slightly supersaturated nuclei, the radial stability con-
dition (18) holds for the larger root but not for the smaller
root. Consequently, in slightly supersaturated systems (a
< 3u/4), the smaller equilibrium spherical nucleus is radially
stable and the larger is radially unstable. (In the strongly
supersaturated case, there are no equilibrium radial configu-
rations.)

V. A NEED FOR FURTHER ANALYSIS

An equilibrium physical configuration is considered stable
if it returns to its original state when subjected to an arbitrary
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infinitesimal perturbation. Conversely, if there is even a
single infinitesimal perturbation that results in the system
moving away from its equilibrium, such configuration is con-
sidered unstable.

In our problem, the larger equilibrium nucleus in the
slightly supersaturated case is radially unstable. It is, there-
fore, unstable in the overall sense. However, the smaller
equilibrium nucleus in the slightly supersaturated case as
well as the only equilibrium nucleus in the undersaturated
case are radially stable. Therefore, the question of their over-
all stability remains open. We must investigate their stability
with respect to general morphological perturbations of the
interface S.

It is quite common for a physical system to be radially
stable but morphologically unstable. In Ref. 14, a universal
morphological instability was theoretically predicted in the
undersaturated case, despite radial stability. In another spec-
tacular example from low-temperature physics, an identical
situation is observed for 2S and 3S electron bubbles.!®-?
These and numerous other examples show that the question
of morphological stability is essential.

We would also like to note morphological stability is not
necessarily the end of the story, either. The analysis pre-
sented in this paper is based on smooth variations. It is there-
fore possible that while an equilibrium configuration is stable
with respect to smooth perturbations it is unstable with re-
spect to perturbations with discontinuities either in the per-
turbation itself or higher derivatives.

VI. SECOND VARIATION

In order to investigate the morphological stability of the
equilibrium configuration of the spherical nucleus we calcu-
late the second energy variation with respect to arbitrary nor-
mal infinitesimal perturbations of the interface C. The second
variation is derived by analyzing the first variation [Eq. (6)]
using the techniques of the calculus of variations and moving
surfaces. We first note several key identities from the calcu-
lus of moving surfaces. If F is three-dimensional field that its
variation OF on the surface is related to its variation JF in
space by the chain rule

8F = JF + CN'V,F. (19)

This relationship is used in the analysis of the electrical term
in the first variation [Eq. (6)]. The variation 6Bf of mean
curvature is given by

8BY = AsC + CBLBj, (20)

where Ag is the surface Laplacian and Bng is known as the
third ground form of a surface.!®This relationship is required
for the analysis of the surface-tension term in the first varia-
tion [Eq. (6)]. The variation SN of the normal vector is given
by

éN:—VSC, (21)

where V is the surface gradient.
Let d¢ be the variation in the electrostatic potential ¢
induced by the infinitesimal normal deformation C of the
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boundary S. It requires a separate calculation outlined below.
The second variation d°G of the Gibbs free energy G in the
vicinity of an equilibrium configuration is obtained by find-
ing variations in each of the terms in the first variation [Eq.
(6)]. The result is

r

2N,-Nj[st deVig]
+2CNN'NeVipV V0]
- CN'[eVVieViel (. (22)
~[eV;0¢V'¢]
- o(AsC + CBEBY)

d&*G= f dSCY
S

\ J

This expression is valid for arbitrary equilibrium configura-
tions. The discontinuity jump [eV;d¢Vip] has the following
interpretation:

[eV,0oVip]l=e(V; Vi) — (V0 oV'p)™. (23)

Decompose the displacement C of the interface in spheri-
cal harmonics Y,,,(0, @),

C=Rp>, CpYin(6,0). (24)
I,m

The spherical harmonics are orthogonal and normalized to
unity over the unit sphere,

f | |Y1m(0,a)|2dS= 1. (25)
[r]=1

All of the ingredients in the integral [Eq. (22)] can be ex-
pressed in terms of Cj,. Recall that the trace of the third
groundform is given by!®

2
BgB?g: I? (26)

The spherical harmonics Y, are eigenfunctions of the sur-
face Laplacian Ag, with corresponding eigenvalues —I(/+1)
on the unit sphere. Therefore, on the sphere of radius R, the
eigenvalue is —/(/+1)R~> and the surface Laplacian of C is
given by

R
ASC == E%E l(l + I)Clelm(a’ a)' (27)
I,m

The quantities NNN{eVipV V0] and N(eV,V,oV'e] are
obtained from the unperturbed potential ¢,

5 2
; ; y(1-x0
NNN{eVipV .V, ¢]= ———=—, 28
N'N(eV'eV,;V, 0] 8760 K (28a)
5 2
. y(1-x0
NeV, V.oVig]= ————. 28b
[8 kYiP QD] 877280 RSQ ( )

The expression for the first-order perturbation d¢ of the
electric field ¢ is obtained by solving a perturbation of the
electrostatic system [Egs. (1a) and (1b)]. The following sys-
tem is valid for spherical configurations:

VVige=0, (29a)
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Q(e - &)
[de]= CFOSROZ’ (29b)
Ni[eV,;d¢]=0. (29¢)

The solution is given by the harmonic series,

1 0
(9(,0(7, ﬁ,af) = _E Zl(r)Ylm(ava)’ (30)
4’7T80RQ Lm
where
rl r—l—l
A+R_IQ +B+1?, for Rp <r<R
Z[(r) = -1 (31)
B_ﬁ, for R<r<o
Ry
and

C
A, =- y-“—”—’L’)”(z +D)(kl+k+D(k=1), (32a)
K
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C
B.=—y NIk~ 17+ 1),

D (32b)

C —(k=1)(I+1)

B =y D= (- 1) X ( ,
Y D we=1) +y P D (el + i+ 1)

(32¢)

D=y (el + k+D(kl+1+1) = l(k=1)2(I+]1).
(32d)

The remaining terms in Eq. (22) can be found by differenti-
ating Eq. (30) with respect to r and evaluating the result at
the boundary.

We now substitute these expressions in the second varia-
tion [Eq. (22)] and obtain an expansion of d>G in terms of
Cj,n- The result is a diagonal quadratic form in C,,,

Q2

=D+ DU =12 = (kl+ k+ D= D=+ DU+2)] 5

A/m -

This expression leads to the criteria of overall morpho-
logical stability. In order for the system to be stable, all A,
must be positive,

A,y > 0. (35)

This general criterion for morphological stability includes
radial variations (/=0) and translational variations (/=1).
The simplest variations that result in a change in shape take
place when /=2. Greater [ correspond to higher harmonics
and represent more complex morphological perturbations.
When testing for morphological stability, each term A, is
evaluated at the equilibrium value of y determined by Eq.
(15a).

Radial perturbations, 1=0. Ay, is given by

Ag=20("-u) (36)

and leads to conclusions entirely consistent with Thomson’s
results and the radial analysis presented above. In the under-
saturated case, y is always greater than u. Consequently, the
sole equilibrium nucleus is radially stable. In the supersatu-
rated case, the smaller nucleus (y > u) is radially stable while
the larger (y<u) is radially unstable.

Translational perturbations, [=1. A, is given by

11+ D) (k- D2 4 (kl+ k+D(kl+1+1)

d*G=————2,4,,|C,.J% 33
1677280RQ%3 lm| Im ( )
where
y+u(l-1)(1+2). (34)
I
6(2k+1)y?

A= Qr+ 1D(k+2)=2(k- 1% (37
We find that A;,>0 for all combinations of parameters.
Therefore, the equilibrium spherical nucleus is stable with
respect to translation of the phase interface as a rigid body.

Lowest order morphological perturbations, 1=2. A,,, is
given by

6(k—1)%° - 3k +2)2k-12) ,
T 6(k— 1)y - 3k +2)(2k+3) "

Ay = +4u’. (38)
This expression leads to the conclusion that all equilibrium
weakly supersaturated nuclei are morphologically stable.
Therefore, Thomson’s conclusion regarding radial stability
of the smaller equilibrium nucleus is also valid for morpho-
logical perturbations. However, in the undersaturated case,
both stability and instability are possible depending on the
combination of parameters. This phenomenon is not revealed
by Thomson’s analysis. On the other hand, the possibility of
stability in the undersaturated case represents a qualitative
difference between a dielectric substance and a conductor.
For example, for water (x=80) the equilibrium is morpho-
logically stable if y>0.86. The general recipe for determin-
ing stability is to compute u and a from the physical param-
eters of the system according to Egs. (15b) and (15¢). Then
the equilibrium radius R represented by y can be determined
by solving Eq. (16). Finally, the system can be tested against
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the instability criterion A,,, <0. Furthermore, this recipe can
be “inverted” to determine the values of the parameters re-
quired to observe an instability.

Higher order morphological perturbations, [>2. The sta-
bilizing influence of surface tension grows with /. As a result,
A;,,>0 for all combinations of parameters for />2. This
represents a marked contrast to Rayleigh’s instability of an
isolated liquid droplet,”! where an electrical charge that is
large enough is capable of destabilizing any given harmonic.
In this behavior we observe the stabilizing influence of phase
transformations.

We now investigate two asymptotic limits. First consider
the conducting limit, x>1. The instability criterion [Eq.
(35)] becomes y*u=>>4. This is equivalent to y>4!3y
which is synonymous with undersaturation, as illustrated in
Fig. 2. This conducting limit leads to conclusions consistent
with the analysis of a conducting substance in Ref. 14. This
is an example in which treating a conductor as a limiting
case of a dielectric results in a regular limit. The next
asymptotic that we consider will not have this property.

Consider the mode in which the condensate covers the
inhomogeneity with a thin crown characterized by y being
nearly 1. This takes place when u=>=4(1—-a). The instability
criterion [Eq. (35)] for /=2 reads

2k+3

K

+2u° <0, (39)

indicating stability in all cases. In this, our system possesses
an intriguing feature. Namely, the limits x>1 and y~1 are
not interchangeable. In this limiting behavior, a dielectric is
unlike a conductor, which is always unstable in the under-
saturated case. This example also shows that calculations
performed for a “thin layer” mode must be accomplished
with utmost care.

VII. QUASISTATIC EVOLUTION

We present an evolution law by which nonspherical equi-
librium configurations can be discovered. It is apparent that
nonspherical equilibrium configurations exist on nonspheri-
cal charged inhomogeneities. Furthermore, the possibility
has not been ruled out that on a spherical inhomogeneity an
unstable spherical nucleus will deform to a stable nonspheri-
cal configuration.
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The master system of quasistatic evolution consists of the
electrostatic system [Egs. (1a) and (1b)] combined with this
equation for C,

C NN[T+ ope s PP 2P (40)

dr ! “ p-
where T% is the Maxwell tensor defined in Eq. (7). According
to Eq. (6), this choice of C guarantees monotonic decrease in
the energy. Note, we write C/d7 because heretofore we in-
terpreted C as infinitesimal normal displacements while the
right-hand side of Eq. (40) is meant to express the desired
rate of normal deformation.

It follows immediately from Eq. (6) that the energy [Eq.
(4)] is monotonically diminished by Eq. (40). This technique
reveals stable equilibrium shapes by starting with an arbi-
trary configuration. Given a current configuration of the in-
terface, one must determine the electrostatic fields by solving
Egs. (1a) and (1b) and then advance the interface along the
outward normal according to Eq. (40). By iterating this pro-
cedure one can arrive at stable equilibrium shapes—if such
shapes exist. So far we have been unable to discover such
configurations numerically but we are not yet prepared to
conclude that no stable equilibrium shapes exist and continue
to refine our numerical techniques.

VIII. CONCLUSION

J. J. Thomson’s radial stability analysis left open the ques-
tion of morphological stability of dielectric nuclei. In this
work, Thomson’s approach is generalized to address this
question. We concluded that in the weakly oversaturated case
the smaller equilibrium nucleus is morphologically stable.
(The radial instability of the larger nucleus was discovered
by Thomson.) However, in the undersaturated case, morpho-
logical instability is possible under a variety of scenarios,
such as a large charge Q or a high relative dielectric constant
k. The fact that stability is also possible in the undersaturated
case represents a qualitative difference between a dielectric
substance and a conductor, the latter being universally un-
stable in the undersaturated case. On the other hand, the fact
that dielectric substances can also display the instability
greatly expands the number of experiments that could verify
Thomson’s thermodynamic model.
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